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 Abstract: Diabetes has been linked to an increased risk of mild cognitive impairment (MCI), a condi-
tion characterized by a subtle cognitive decline that may precede the development of dementia. The 
underlying mechanisms connecting diabetes and MCI involve complex interactions between metabolic 
dysregulation, inflammation, and neurodegeneration. A critical mechanism implicated in diabetes and 
MCI is the activation of inflammatory pathways. Chronic low-grade inflammation, as observed in dia-
betes, can lead to the production of pro-inflammatory cytokines such as tumor necrosis factor-alpha 
(TNF-α), interleukin-6 (IL-6), interleukin-1 beta (IL-1β), and interferon-gamma (IFNγ), each of which 
can exacerbate neuroinflammation and contribute to cognitive decline. A crucial enzyme involved in 
regulating inflammation is ADAM17, a disintegrin, and metalloproteinase, which can cleave and re-
lease TNF-α from its membrane-bound precursor and cause it to become activated. These processes, in 
turn, activate additional inflammation-related pathways, such as AKT, NF-κB, NLP3, MAPK, and 
JAK-STAT pathways. Recent research has provided novel insights into the role of ADAM17 in diabe-
tes and neurodegenerative diseases. ADAM17 is upregulated in both diabetes and Alzheimer's disease, 
suggesting a shared mechanism and implicating inflammation as a possible contributor to much 
broader forms of pathology and pointing to a possible link between inflammation and the emergence 
of MCI. This review provides an overview of the different roles of ADAM17 in diabetes-associated 
mild cognitive impairment diseases. It identifies mechanistic connections through which ADAM17 
and associated pathways may influence the emergence of mild cognitive impairment. 
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1. INTRODUCTION 

 Diabetes is a chronic, metabolic disease characterized by 
elevated levels of blood glucose (hyperglycemia), which 
eventually results in alterations in insulin signaling, leading 
ultimately to insulin resistance and chronic inflammation. 
The most common is type 2 diabetes mellitus (T2DM), usu-
ally in adults, which occurs when the body becomes resistant 
to insulin or doesn't make enough insulin due to lifestyle 
imbalance. According to the World Health Organization 
(WHO), 422 million people worldwide have diabetes, a 
number likely to more than double in the next 20 years [1], 
with an estimated total economic cost of $327 billion [2]. 
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 Individuals with T2DM are at an increased risk of mild 
cognitive impairment (MCI) and dementia [3]. The risk of 
dementia is increased by 50-100% in people with T2DM 
relative to people without diabetes [4]. T2DM is associated 
with mild-to-moderate cognitive deficits, primarily in 
memory, psychomotor speed, and executive function. 
Changes in cognitive function compared to non-diabetic con-
trols can be seen early during T2DM [5]. Besides the sub-
stantial direct burden that diabetes imposes on society, de-
mentia affects 47 million people worldwide. Every year, 
there are 9.9 million new cases. The global total of affected 
people is expected to increase to 75.6 million in 2030 and 
135.5 million in 2050 [6]. 

 Persistent hyperglycemia provokes a cascade of physio-
logical alterations throughout the body, including oxidative 
stress and vascular damage, creating vicious pathological 
cycling. Elevated blood glucose in uncontrolled diabetes has 
been attributed to facilitate a low-grade systemic inflamma-
tion by causing the elevation of proinflammatory cytokines 
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such as interleukin-6 and C reactive proteins [7-9]. Such 
low-grade inflammation has been attributed to several long-
term complications of diabetes mellitus, including diabetic 
neuropathy [10, 11], nephropathy [12, 13], and retinopathy 
[14]. More importantly, cardiovascular disease (both micro-
vascular and macrovascular), for which diabetes is the lead-
ing risk factor, has been attributed to the low-grade inflam-
mation caused by chronic uncontrolled diabetes [15, 16]. A 
recent prospective cohort study of diabetic subjects demon-
strated that low-grade inflammation (elevated C-reactive 
proteins) is an independent risk factor for vascular and all-
cause mortality [17]. Additionally, post-hoc analysis of the 
Modified Release Controlled Evaluation (ADVANCE) popu-
lation study, the proinflammatory cytokine interleukin-6 was 
found to be an independent predictor of macrovascular 
events and mortality [18].  

 Within the brain, the general low-grade inflammation, 
insulin resistance, and hyperglycemia compromise neuronal 
support and exacerbate neuroinflammation [19-21], which 
collectively impairs cognitive function and ultimately con-
tributes to the development of MCI in diabetic individuals. 
Although numerous epidemiological and preclinical studies 
have indicated a strong link between T2DM and cognitive 
impairment [22, 23], the mechanism of cognitive dysfunction 
in T2DM remains unclear. It is speculated that the pathologi-
cal characteristics of diabetes, such as hyperglycemia, insulin 
resistance, and chronic inflammation, may be associated with 
structural and pathophysiological changes in the brain lead-
ing to cognitive dysfunction [24]. At the molecular level, 
long-term effects of diabetes have been shown to increase 
oxidative stress-induced cell death [25, 26]. Furthermore, as 
insulin receptors are widely expressed in the nervous system 
[27], impaired insulin signaling in the context of T2DM may 
also contribute to the development of neurodegeneration 
[24]. The brain is especially susceptible to oxidative stress 
due to its high metabolic activity, abundant lipid content and 
lack of antioxidant enzymes. In addition to the local contri-
bution of hyperglycemia-induced oxidative stress to neuronal 
inflammation, chronic low-grade systemic inflammation due 
to uncontrolled hyperglycemia can be a major player in neu-
ronal dysfunction [28]. The circulating proinflammatory 
cytokines can increase the permeability of the blood-brain 
barrier, in addition to initiating neuro-inflammation [29]. The 
cytokines also upregulate the actions of nuclear-transcription 
factors, causing the transcription, translation, and synthesis 
of additional pro-inflammatory molecules, feeding into the 
vicious cycle. Franceschi and coworkers have used the term 
“inflamm-aging” to describe systemic low-grade inflamma-
tion in the context of metabolic disease-associated neuronal 
aging [30]. 

 Disintegrin and metalloprotease 17 (ADAM17) have 
recently gained attention due to their pivotal role in a variety 
of inflammatory conditions [31]. ADAM17 is a shreddase 
that cleaves and activates a number of cytokines, including 
tumor necrosis factor-alpha (TNF-α). TNF-alpha directly 
promotes an inflammatory state and disrupts insulin signal-
ing pathways [32]. In addition to cytokines, ADAM17 is 
involved in the shredding/processing of chemokines, adhe-

sion molecules, and growth factors [33]. Clinical studies 
have demonstrated that ADAM17 is overexpressed in biop-
sies of subjects with chronic inflammatory diseases such as 
rheumatoid arthritis [34], psoriasis [35], and Crohn’s disease 
[36]. The treatment of mesangial cells with high glucose re-
sults in an elevation of ADAM17 gene expression [37], sug-
gesting a role for ADAM17 in diabetic conditions [38]. AD-
AM17 has been shown to cleave the ectodomain of the insu-
lin receptor, which can result in insulin resistance [39]. Lo-
cally, ADAM17 activates microglia and plays a key role in 
neuroinflammation [40].  
 Given the pivotal role of ADAM17 in chronic inflamma-
tion, ADAM17 appears to be an attractive treatment target to 
delay or prevent low-grade chronic neuroinflammation and is 
associated with the pathophysiology of a number of neuro-
degenerative diseases. This article provides an overview of the 
function and regulation of ADAM17 and current knowledge 
about its role in diabetes and neurodegenerative diseases. In 
addition, this article examines the involvement of ADAM17 in 
the molecular pathways of diabetes-associated MCI, high-
lighting the potential for targeting ADAM17 as a strategic 
intervention in this condition. 

2. ADAM17  

2.1. Structure 

 ADAM17 is a protease that is part of the ADAM family, 
which consists of membrane-tethered disintegrin and metal-
loproteases. These proteases play a significant role in ecto-
domain shedding, a process involving the cleavage of cell 
membrane proteins. Among the 30 known ADAMs in 
mammals, only half possess the metalloproteinase domain 
and proteolytic potential [41]. ADAM17 shares a highly con-
served catalytic domain with other members of the metzincin 
superfamily, which includes matrix metalloproteases 
(MMPs) and disintegrin metalloproteinases with thrombos-
pondin domains (ADAMTSs) [42, 43]. The structure of 
ADAM17 consists of an N-terminal pro-domain, a catalytic 
domain, a disintegrin domain, a membrane-proximal domain 
(MPD), and a short stalk domain called CANDIS. It also has 
a transmembrane domain and an intracellular cytoplasmic 
domain. The catalytic domain uses a zinc ion (Zn2+) for its 
function, which is coordinated by three histidines in a con-
served binding motif [44]. 

2.2. Regulators 

 Regulation of ADAM17 occurs at multiple levels, includ-
ing maturation, activity, selectivity, and degradation. A com-
prehensive understanding of these regulatory mechanisms is 
essential for elucidating the roles of ADAM17 in different 
biological contexts and developing potential therapeutic 
strategies. While this text briefly highlights the regulatory 
dimension of ADAM17, several previous studies provide a 
detailed analysis of the regulation of ADAM17 [45-47]. Re-
garding ADAM17 maturation, this protease is synthesized as 
an inactive zymogen in the endoplasmic reticulum, which 
undergoes proteolytic processing in the Golgi apparatus to 
become an active enzyme. This process involves the removal 
of the pro-domain by furin-like convertases, which allows 
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the catalytic domain to adopt an active conformation [48]. 
Additionally, chaperone proteins such as inactive rhomboid 
protein 1 (iRhom1) and iRhom2 have been shown to facili-
tate ADAM17 maturation and transport from endoplasmic 
reticulum to the cell surface [49, 50]. The activity of AD-
AM17 can be regulated by various factors, including post-
translational modifications, protein-protein interactions, and 
changes in the cellular environment. For instance, phosphor-
ylation of the cytoplasmic domain by different kinases, such 
as ERK, p38 MAPK [51], and PKC [52], can modulate AD-
AM17 activity. Moreover, the interaction of ADAM17 with 
other proteins, such as TIMP3, can inhibit its proteolytic 
activity [53, 54]. Additionally, changes in the cellular envi-
ronment, such as oxidative stress, can also affect ADAM17 
activity [49]. ADAM17 recognizes and cleaves a wide range 
of substrates, including cytokines, growth factors, and cell 
adhesion molecules. Its substrate selectivity is determined by 
the specific recognition of certain amino acid sequences in 
the target proteins and the spatial and temporal distribution 
of both the enzyme and its substrates. Furthermore, substrate 
availability and competition between different sheddases can 
also influence ADAM17 selectivity. Tetraspanins regulate 
the substrate selectivity of ADAM17 and iRhoms interactivi-
ty [47], with iRhom2 principally related to the inflammatory 
process [55, 56]. The regulation of ADAM17 activity is also 
achieved through its degradation. After fulfilling its func-
tions, ADAM17 can be internalized from the cell surface 
through clathrin-dependent internalization and subsequent 
recycling or degradation [46]. This process helps maintain a 
balanced level of ADAM17 activity in the cell and prevents 
excessive proteolysis.  A regulator that determines the fate of 
ADAM17 after internalization in resting cells was recently 
described. Phosphofurin Acidic Cluster Sorting Protein 2 
(PACS-2) diverts ADAM17 away from degradation and in-
stead promotes the recycling of the protease [57]. Also, iR-
homs stabilize the ADAM17 membrane complex [58, 59]. 

 One challenge of using chemical inhibitors to target 
ADAM17 is the similarity of its catalytic domain to other 
proteases in the metzincin superfamily. This similarity can 
lead to off-target effects and a lack of specificity when using 
inhibitors, making it challenging to develop effective and 
selective drugs for ADAM17. Consequently, after examining 
the primary regulatory processes of ADAM17, iRhoms has 
emerged as a crucial factor in managing ADAM17's activity 
through three main mechanisms: maturation, substrate selec-
tivity, and stabilization. Given the distinct cellular expression 
and substrate selectivity of iRhom2, primarily found in mac-
rophages [50, 60] and associated with TNF-α release associ-
ated with ADAM17 [55], iRhom2 emerges as a potentially 
viable target for modulating ADAM17 function. This ap-
proach could surmount the challenge related to the off-target 
effects of ADAM17 targeting. 

2.3. Function 

 ADAM17 was the first sheddase to be characterized. This 
enzyme mediates the ectodomain shedding of over 80 sub-
strates, including cytokines, growth factors, adhesion mole-
cules, and endocytic receptors [44]. Due to its numerous 

substrates, ADAM17 is involved in several biological pro-
cesses, such as development, regeneration, immunity, chron-
ic inflammation, and tumorigenesis [61-63]. In this review, 
we will focus on the physiological and pathological func-
tions of ADAM17 that have been characterized in vivo, par-
ticularly in the context of metabolic and neurodegenerative 
diseases. 
 As a general mechanism, ADAM17 generates two potent 
initiators of the immune response: the soluble IL-6 receptor 
(IL-6R) and TNF-α. Consequently, it represents a key com-
ponent in the pathophysiology of autoimmune and chronic 
diseases [64, 65]. In neutrophils and macrophages, ADAM17 
controls the cleavage of membrane-bound TNF-α into pro-
inflammatory soluble TNF-α (sTNF-α) and cleavage of 
TNF-Receptor (TNF-R) into sTNFR. This process is tightly 
regulated by iRhom1 and iRhom2 and Polo-like kinases [66, 
67], which have already been described previously. 
 Due to its involvement in various physiological and 
pathological processes, ADAM17 knock-out mice often die 
within several hours after birth, indicating that the loss of 
ADAM17 is not compatible with life [61]. The first condi-
tional ADAM17 knock-out mice were reported by Blobel 
and coworkers in 2005 [68]. They inactivated the ADAM17 
gene in myeloid cells and demonstrated that the loss of AD-
AM17 prevented death from lethal endotoxin injection. Fur-
thermore, numerous groups have used the conditional AD-
AM17 knock-out mice to inactivate the ADAM17 gene in 
various tissues, demonstrating the essential role of ADAM17 
in the skin, heart, liver, and innate and acquired immunity. 

3. ROLE IN DIABETES 

 The involvement of ADAM17 in the development and 
progression of diabetes is well established. ADAM17 sub-
strates are directly involved in the progression of T2DM, 
primarily through the dysregulation of inflammation. The 
pro-inflammatory cytokine TNF-α is linked to obesity, in-
flammation, and insulin resistance due to its crucial contribu-
tion to adipocyte metabolic dysregulation [47, 69]. Elevated 
TNF-α results in the serine phosphorylation of insulin-
receptor substrate-1 (IRS-1), which facilitates the ubiquitina-
tion of this important effector downstream of the insulin re-
ceptor kinase, consequently blunting insulin signaling [32]. 
Shedding of the IL-6 receptor (IL-6R) is related to the IL-6 
trans-signaling pathway, which is also linked to obesity-
induced adipose tissue inflammation [70]. IL-6 causes insu-
lin resistance by impairing the phosphorylation of insulin 
receptors and IRS-1 via the overexpression of SOCS-3 (Sup-
pressor of cytokine singling 3) [71]. 
 Additionally, ADAM17 indirectly enhances IL-1 signal-
ing in cells by selectively cleaving the decoy receptor IL-
1R2, which promotes IL-1 binding to IL-1R1 [72]. By alter-
ing the balance between IL-1R1 and its decoy receptor IL-
1R2, ADAM17 enhances sensitivity to IL-1, leading to the 
activation of nuclear factor-kappa B (NF-κB) and promoting 
a major pro-inflammatory pathway, contributing to the path-
ogenesis of insulin resistance. Finally, ADAM17 cleaves 
pre-adipocyte factor 1, which inhibits adipose tissue differ-
entiation, reduces the expression of adipocyte markers, and 
decreases fat mass [73]. 
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 In humans, ADAM17 expression and enzymatic activity 
were increased in T2DM skeletal muscle, as were the  
substrates TNF-α and IL6-R, which positively correlated 
with insulin resistance [74]. In experimental studies, treat-
ment with the ADAM17 inhibitor Marimastat improved  
surrogate markers for insulin sensitivity and reversed steato-
sis in mouse models of diet-induced obesity and leptin defi-
ciency [75]. Inactivation of ADAM17 suppressed high-fat 
diet (HFD) induced obesity, insulin resistance, hepatosteato-
sis, and adipose tissue remodeling in mice, with increased 
energy expenditure, suggesting an essential role for AD-
AM17 in the development of obesity-induced metabolic dis-
orders [76]. Furthermore, systemic overexpression of AD-
AM17 induced macrophage infiltration and subsequent fi-
brosis in adipose tissue under a high-fat diet regimen, in-
creased TNF-α serum levels, general inflammation, and mac-

rophage-related cytokines (INF-y, IL-1b, MCP-1) [77], 
demonstrating the sufficient actions of this protease in the 
development of T2DM. 

 Regarding tissue influence, visceral adipose tissue (VAT) 
was the only tissue to increase ADAM17 activity in response 
to the development of obesity [78]. However, the loss of 
adipocyte ADAM17 played no evident role in baseline met-
abolic response when mice were challenged with HFD [79]. 
The ADAM17 silencing of VAT macrophage-targeted was 
sufficient to reduce and alleviate visceral inflammation and 
improve T2DM by reducing whole-body inflammation and 
improving insulin resistance in an obesity-induced diabetes 
model [80]. Table 1 provides the highlights of previously 
published studies related to the involvement of ADAM17 in 
diabetes development [81-84]. 

 
Table 1. Studies illustrating the role of ADAM17 in the pathophysiology of diabetes. 

Study Species Condition Intervention Assessment Main Findings 

Maekawa et al. 
(2019) [81] 

Mice T1DM and T2DM 

Intraperitoneal injection of 
an ADAM17 inhibitor (JTP 
96193) once daily for seven 

days 

Enzymatic activity Kit of  
ADAM17 

Inhibition of ADAM17 pre-
vented development insulin 

resistance in T2DM and periph-
eral neuropathy in T1DM 

Yong et al. 
(2017) [80] 

Mice T2DM associated 
with obesity 

Visceral adipose tissue 
macrophage targeted  
ADAM17 silencing 

Indirect access of ADAM17 
function was accessed through 
quantification of inflammatory 

cytokines 

ADAM17 gene silencing in 
visceral macrophages alleviated 

visceral fat inflammation and 
improved T2DM 

Kawasaki et al. 
(2013) [78] 

Mice Early stage of obesi-
ty 

No intervention Enzymatic activity Kit of  
ADAM17 

In early stage of obesity AD-
AM17 activity is elevated only 

in visceral adipose tissue 

De Meijer et al. 
(2011) [75] 

Mice Hepatic steatosis and 
Insulin resistance 

Orally administration of an 
ADAM17 inhibitor (Mari-
mastat) twice daily for two 

weeks 

α-Secretase activity assay for 
ADAM17 

ADAM17 inhibitor improved 
insulin sensitivity and reversed 
steatosis in mouse models of 

diet-induced obesity 

Kaneko et al. 
(2011) [76] 

Mice T2DM associated 
with obesity 

Transgenic mice with tem-
poral systemic ADAM17 

deletion 

No direct assays were used to 
access ADAM17 involvement 

Inactivation of ADAM17 sup-
pressed diet-induced obesity, 

insulin resistance, hepatic stea-
tosis, and adipose tissue remod-

eling 

Togashi et al. 
(2002) [82] 

Rat 
Nonobese insulin-
resistant hyperten-

sives 

Intraperitoneal injection  
of an ADAM17 inhibitor 

(KB-R7785) once daily for 
two weeks 

No direct assays were used to 
access ADAM17 involvement 

ADAM17 plays a major role in 
insulin resistance in nonobese 

insulin-resistant models 

Prasad et al. 
(2022) [83] 

Rat 
Aorta inflammation 

associated with 
T1DM 

Orally administration of 
diosgenin once daily for 

four weeks 

mRNA and protein expression 
of iRhom2/ADAM17, via PCR 

and WB respectively 

By regulating iR-
hom2/ADAM17 signaling, 

diosgenin lowered dyslipidem-
ia, hypertension, and inflamma-

tion in aorta of T1DM rats. 

Lownik et al. 
(2020) [79] 

Mice Obesity Adipocyte-specific  
ADAM17 knockout model 

No direct assays were used to 
access ADAM17 involvement 

Loss of adipocyte ADAM17 
plays no evident role in baseline 

metabolic responses 

Serino et al. 
(2007) [84] 

Mice T2DM associated 
with obesity 

Heterozygous mice for 
ADAM17 

No direct assays were used to 
access ADAM17 involvement 

ADAM17 heterozygous mice 
presented protection against 

T2DM associated with obesity 
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4. INVOLVEMENT IN NEURODEGENERATIVE 
DISEASES 

 ADAM17's involvement in the progression of brain dis-
ease is considered a double-edged sword due to its two dis-
tinct functions: (1) the regulation of amyloid precursor pro-
tein (APP), which is fundamental to preventing the amyloid 
formation in AD, and (2) the promotion of neuroinflamma-
tion, which is also linked to critical mechanisms driving AD 
progression. Given its crucial role in orchestrating APP 
shedding and TNF-α responses, it is reasonable to speculate 
that ADAM17 may exert dual and opposing effects on the 
development of neurodegenerative diseases. Neuron-
associated ADAM17 could have a beneficial impact by trig-
gering the non-amyloidogenic pathway of APP processing. 
At the same time, microglia-associated ADAM17 might be 
detrimental due to its ability to release TNF-α and sustain 
chronic inflammatory responses. 
 In the context of AD, the prevailing hypothesis places 
amyloid-beta (Aβ) accumulation at the center of the disease's 
pathogenesis. Aβ originates from APP through sequential 
proteolytic cleavage. APP is a type I transmembrane protein 
that can be processed through two distinct pathways: the 
amyloid and non-amyloid pathways. In the amyloid pathway, 
proteolytic processing by β- and γ-secretases generates neu-
rotoxic Aβ from APP [85]. Conversely, in the non-amyloid 
pathway, ADAM17 exhibits α-secretase activity that cleaves 
APP within the Aβ domain, resulting in the release of the 
soluble APP alpha fragment (sAPPα) and consequently pre-
venting the production of neurotoxic Aβ [60, 86]. Notably, a 
preclinical study using abemaciclib mesylate to treat an Aβ-
overexpressing mouse model of AD demonstrated improved 
spatial and recognition memory in treated animals and de-
creased Aβ accumulation. This effect was attributed to the 
enhanced activity of ADAM17 [87]. Additionally, reduced 
ADAM17 function has been linked to Aβ accumulation, 
short-term memory, and cognitive deficits in mice [88, 89]. 
 Furthermore, ADAM17's role extends to modulating the 
shedding of the triggering receptor expressed on myeloid cell 
2 (TREM2) [90]. TREM2 facilitates microglial phagocyto-
sis, which is crucial for managing amyloid plaques [91]. The 
shedding of TREM2 by ADAM17 impairs this function, 
leading to dysregulation of amyloid phagocytosis and accu-
mulation of Aβ. Interestingly, ADAM17 expression levels 
are elevated in AD patients compared to healthy individuals, 
with a significant correlation between elevated plasma AD-
AM17 activity and cognitive decline in AD patients [92, 93].  
 Beyond APP processing, ADAM17 also plays an active 
role in neuroinflammation and AD-related microglial activa-
tion [94]. ADAM17 is constitutively expressed in microglia 
and may promote microglial cell survival [95]. Furthermore, 
it is involved in the generation and maturation of several 
AD-related inflammatory factors, such as TNF-α, EGF-like 
growth factors, and specific cell adhesion molecules (CAMs) 
[68]. Imaging studies have shown that reactive microglia can 
be detected at very early clinical stages of the disease [96]. 
Also, microglial activation was observed in AD mouse mod-
els before amyloid plaque formation [97]. The role of in-
flammation in AD pathogenesis is further supported by stud-
ies demonstrating the efficacy of TNF inhibitors in reducing 

plaque deposition and microglial activation in both preclini-
cal and clinical AD models [98]. 
 ADAM17 modulates the expression of cell adhesion 
molecules, including VCAM-1 and ICAM-1 [99, 100], 
which are involved in leukocyte migration across the BBB 
and infiltration into the CNS [101]. Additionally, ADAM17 
cleavage of CX3CL1 (Fraktaline) [102], another adhesion 
molecule with both neuroprotective and neurodegenerative 
roles, highlights its complex involvement in central nervous 
system (CNS) processes. 
 Animal model studies have further elucidated ADAM17's 
role in neurodegenerative diseases, showcasing its intricate 
interplay within the CNS. Transgenic and knockout models 
specifically designed to overexpress or ablate ADAM17 in 
CNS cells and brain tissue have provided critical insights 
into its physiological and pathological implications. A study 
exploring the impact of ADAM17 knockout in astrocytes 
showed an amelioration of HIV-1 Tat-induced inflammatory 
responses and neuronal death, suggesting the enzyme's in-
volvement in neuroinflammatory pathways relevant to neu-
rodegenerative diseases [103]. Furthermore, research on a 
loss-of-function variant of ADAM17 associated with familial 
Alzheimer's disease highlighted the enzyme's genetic impli-
cations in neurodegeneration, offering a genetic perspective 
on its role in these diseases [104]. On the other hand, a study 
in the APP/PS1 mouse model of Alzheimer's disease demon-
strated that overexpression of ADAM17 could influence 
cerebrovascular functions and cognitive abilities, highlight-
ing its potential role in AD pathology and as a therapeutic 
target [105]. Table 2 outlines the key studies related to the 
involvement of ADAM17 in AD pathology [106]. 
 Further, ADAM17's regulatory mechanisms involve its 
interaction with iRhom1 and iRhom2, which differ in ex-
pression across cell types. Specifically, microglia predomi-
nantly express iRhom2, which is involved in inflammatory 
actions, while iRhom1 is ubiquitously expressed throughout 
most brain cells [50, 60]. Given this context, iRhoms repre-
sents a promising therapeutic target in neurodegenerative 
diseases. Due to their distinct tissue expression, ADAM17's 
ability to process APP or TNF-α can be differentially regu-
lated by either iRhom1 or iRhom2 [107]. In line with its role 
in promoting TNF-α release and neuroinflammation, iRhom2 
has been identified as a genetic risk factor in AD [108]. Con-
sequently, a potential inhibition of iRhom2 would inactivate 
ADAM17 in microglia, thereby preventing the pathological 
cleavage of TNF-α. However, in neurons, iRhom1 would 
still support the ADAM17-dependent non-amyloidogenic 
processing of APP and maintain the other physiological 
functions of the protease in the brain (Fig. 1).  

5. IMPACT OF DIABETES ON COGNITIVE IM-
PAIRMENT  

 The interplay between metabolic dysregulation, inflam-
mation, and oxidative stress in T2DM contributes to cogni-
tive decline and an increased risk of neurodegenerative dis-
eases. Glial cells, which include astrocytes, microglia, and 
oligodendrocytes, are crucial for maintaining brain homeo-
stasis and supporting neuronal functions. In T2DM, these 
cells experience adverse effects due to significant changes in 
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Table 2. Studies illustrating the role of ADAM17 in AD and neuroinflammation. 

Study Species Condition Intervention ADAM17 Involvement Main Finding 

Tian et al. 
(2023) [105] 

Mice AD No intervention Protein expression of ADAM17 
trough WB and IHC 

Reduced ADAM17 expression 
in cerebral micro vessels may 
contribute to the development 

of cognitive dysfunction in AD 

Skovronsky et al. 
(2001) [93] Human Control and AD 

samples No intervention Protein expression of ADAM17 
trough WB and IHC 

In control samples ADAM17 
expression was main located in 
neurons and in AD samples its 

expression was colocalized with 
Aβ plaques formation 

Pietri et al. 
(2013) [89] 

Mice Prion and AD 
PDKI inhibition trough 
chemical and genetic 

deletion 

ADAM17 activity access through 
indirect assessment of sTNF-α and 

expression pattern through IHC 

PDK1 inhibition attenuates 
AD–like pathology and prion 

disease through ADAM17 
upregulation 

Sun et al. 
(2014) [92] 

Human AD No intervention 
ADAM17 expression and activity 

was accessed through WB and 
enzymatic activity kit respectively 

ADAM17 activity is increased 
in patients with MCI and AD 

Zhang et al. 
(2022) [106] Rat 

Chronic stress-
induced hippocam-
pal inflammation 

Intraperitoneal injection 
of melatonin once daily 

for seven days 

ADAM17 expression was accessed 
through WB 

Melatonin relieves chronic 
stress-induced hippocampal 
inflammation by inhibiting 

ADAM17/TNF-α axis 

 

 
 

Fig. (1). Involvement of ADAM17 in brain physiology (A, B) and neurodegenerative disease (C). (A) ADAM17 cleaves a series of proteins 
related to neural development (L1 and NCAM), learning and memory (LTD and NRP), and plasticity (RA175/SynCAM1) is regulated by 
iRhom1. (B) In neurons, iRhom1 may have a beneficial function as ADAM17 is responsible for processing APP into a non-amyloid form, 
known as sAAPα. (C) In microglia cells, protein processing can lead to impairment of APP processing (consequent to cleavage by TREM2), 
microglia activation (due to the release of pro-inflammatory cytokines, such as TNF-α and IL-6R and leukocyte), and upregulated inflamma-
tory response (due to the cleave of adhesion molecules such as VCAM-1, ICAM-1 and CXCL1) causing damage to the blood-brain barrier 
damage. (A higher resolution/colour version of this figure is available in the electronic copy of the article). 
 
the brain environment, resulting in impaired neuronal sup-
port and exacerbated neuroinflammation [109]. 
 Chronic low-grade inflammation in T2DM leads to the 
activation of microglia [110], the resident immune cells of 

the central nervous system. This activation releases pro-
inflammatory cytokines, such as TNF-α, IL-6, and IL-1β, 
which worsen neuroinflammation, contribute to neuronal 
damage, and promote cognitive decline [110]. Moreover, 
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T2DM affects astrocytes, which are responsible for main-
taining the blood-brain barrier and providing metabolic sup-
port to neurons. Insulin resistance and subsequent chronic 
hyperglycemia can alter astrocyte morphology and function, 
compromising neurovascular coupling, reducing neu-
rotrophic support, and disrupting glutamate homeostasis 
[111]. Additionally, hyperglycemia-induced oxidative stress 
and inflammation impair the function of oligodendrocytes, 
which are responsible for myelin production and mainte-
nance. This impairment leads to demyelination, reduced neu-
ronal signal transmission, and neurodegeneration [112]. Al-
so, insulin plays a crucial role in the brain's management of 
Aβ plaques. The insulin-degrading enzyme, responsible for 
breaking down insulin and Aβ, may prioritize insulin over 
Aβ when insulin levels are high, leading to Aβ accumulation 
[113]. Moreover, insulin maintains the blood-brain barrier 
and consequently enhances cerebral perfusion, which is es-
sential for Aβ clearance [114].  
 In summary, ADAM17 is involved in the shedding of 
membrane-bound proteins, including pro-inflammatory cy-
tokines and their receptors. This process is crucial in modu-
lating inflammatory responses and insulin signaling path-
ways, both of which are key contributors to the development 
of cognitive deficits in T2DM patients. The activation of 
ADAM17 in diabetes can lead to an exacerbation of inflam-
matory and oxidative stress responses, thereby influencing 
glial cell function and neuronal integrity, which are essential 
in the context of cognitive health. 

6. ADAM17 RELATED SIGNALING PATHWAYS 

 ADAM17 plays a critical role in the modulation of sig-
naling pathways that are pivotal in the pathophysiology of 
diabetes and its associated-neurodegenerative consequences. 
ADAM17 affects several signaling pathways involved in 
stress response, including the phosphatidylinositol-3-kinase 
and protein kinase B (PI3K/AKT), NF-κB, Janus kinase-
Signal Transducer and Activator of Transcription (JAK-
STAT), mitogen-activated protein kinase (MAPK), NOD-
like receptor family, and pyrin domain containing 3 
(NLRP3) inflammasome signaling pathways (Fig. 2).  

7. PI3K/AKT PATHWAY  

 The PI3K/AKT signaling pathway is instrumental in pro-
moting anti-inflammatory, anti-oxidative, and anti-apoptotic 
responses in neurons [115]. In the milieu of T2DM, elevated 
chronic plasma levels of TNF-α, a consequence of AD-
AM17's shedding activity, promote insulin resistance [116, 
117], thereby decreasing the activation of the PI3K/AKT 
pathway [20]. Although the brain's insulin signaling is pri-
marily considered independent due to the predominant pres-
ence of GLUT-1 and GLUT-3 over insulin-sensitive GLUT-
4 [118], recent findings have highlighted a strong linkage 
between insulin resistance and cognitive impairments in dis-
eases like MCI [119]  and Parkinson’s Disease (PD) [120], 
with abnormalities in insulin receptor expression and AKT 
signaling. ADAM17 exacerbates this issue by not only in-
creasing the proinflammatory cytokine profile but also by 
cleaving TREM2, further disrupting PI3K/AKT signaling 
and amplifying neuronal damage [121]. 

8. NF-κB PATHWAY 

 The NF-κB pathway, when activated by hyperglycemia-
induced insulin resistance, leads to the production of pro-
inflammatory cytokines and mediators in microglia along-
side an increase in reactive oxygen species (ROS), impairing 
mitochondrial function and inducing neuronal damage [122]. 
Astrocyte polarization, connected to the NF-κB signaling 
pathway, further contributes to ROS production and patho-
logical damage through reactive astrocytes activating the 
NF-κB downstream pathway [123-127] ADAM17's role in 
this context is to cleave membrane-bound TNF-α, releasing 
its soluble form that activates the NF-κB pathway [128], thus 
creating a feedback loop that exacerbates the inflammatory 
response and tissue damage [103, 129]. 

9. NLRP3 PATHWAY  

 NLRP3 inflammasome pathway is involved in diabetes 
development due to its influence on glucose tolerance, insu-
lin resistance, inflammation, and apoptosis mediated in adi-
pose tissue. Also, in the brain, a hyperglycemic environment 
activates pyroptosis, an inflammatory type of cell death, by 
increasing the expression of NLRP3 [130, 131]. In age-
related neurological diseases, such as PD and AD, dopamin-
ergic neurons can exhibit increased pro-inflammatory 
NLRP3 inflammasome activity [132]. In experiments using 
activating mutations, mice with heightened NLRP3 expres-
sion showed accelerated progression of motor deficits [132]. 
 ADAM17 has been linked to the activation of the NLRP3 
through a priming mechanism since ADAM17 mediated 
TNF-α shedding can activate the NF-κB pathway, which in 
turn upregulates NLRP3 expression and primes the inflam-
masome for activation [133]. Interestingly, Madhu et al. 
(2021) observed that melatonin supplementation was effica-
cious for improving cognitive and mood function in rats 
committed to chronic Gulf War illness through the reduction 
of oxidative stress and NLRP3 inflammasome pathway. This 
promising result can further be linked to the research con-
ducted by Zhang et al. 2022, in which results demonstrate a 
beneficial effect of melatonin in hippocampal inflammation 
was associated with inhibiting ADAM17/TNFα axis [106]. 

10. MAPK PATHWAY 

 The MAPK signaling pathway is implicated in the patho-
genesis of diabetes and its complications through hypergly-
cemia and metabolic factors that activate ERK, JNK, and 
p38 MAPK [134]. p38 MAPK activation has been implicated 
in the development of diabetic complications, such as 
nephropathy and retinopathy, through the promotion of in-
flammation and endothelial dysfunction due to its significant 
role in the recruitment of leukocytes to sites of inflammation 
[135]. In neurodegeneration, the MAPK pathway is tied to 
microglial activation and inflammatory mediator production 
[136, 137]. ADAM17 influences this pathway by modulating 
its activation through the phosphorylation of its cytoplasmic 
domain, affecting the balance between ADAM17 dimers and 
monomers [138]. 
 In the absence of MAPK stimulation, ADAM17 exists as 
dimers at the cell surface, enabling TIMP3 to interact effi-
ciently with and inhibit ADAM17. However, the activation 
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Fig. (2). Crosstalk mechanisms related to diabetes, cognitive impairment, and ADAM17.  The trilogy of diabetes consisted of increased con-
centration of free-fat-acids (FFA), development of chronic inflammation, and consequent insulin resistance, which leads to hyperglycemia. 
Hyperglycemia causes dysregulation of cell signaling pathways related to insulin resistance (PI3K/AKT), inflammation (NF-kB, MAPK, and 
JAK-STAT), and oxidative stress (NLPR3), which eventually will lead to the activation of glial cells and subsequent neurodegeneration. The 
primary substrates cleaved by ADAM17 include cytokines TNF-α and IL-6R, which cause increased activation of NF-kB, NLPR3, MAPK, 
and JAK-STAT and damage the blood-brain barrier and neuroinflammation. The increased shedding of TNF-α, and TREM2 by ADAM17 
will accentuate the inhibition of the PI3K/AKT pathway, leading to greater impairment in brain insulin resistance. (A higher resolution/colour 
version of this figure is available in the electronic copy of the article). 
 
of MAPK signaling leads to increased monomer presentation 
and the release of TIMP3 from ADAM17 [138], which re-
sults in the enhanced production of pro-inflammatory signal-
ing and a positive feedback loop between the MAPK and 
ADAM17 pathways. Also, the deleterious impact of TNF-α 
on insulin signaling occurs in a p38 MAPK-dependent man-
ner [32, 139]. This interplay between ADAM17 and MAPK 
signaling underscores the complex nature of their regulatory 
mechanisms and highlights the potential for therapeutic in-
terventions targeting these interconnected pathways. 

11. JAK-STAT PATHWAY 

 The JAK-STAT pathway is a crucial cell signaling path-
way involved in the regulation of various cytokines and 
growth factors, including TNF-α, which plays a central role 
in diabetes development and neuroinflammation, contrib-
uting to the development of MCI [140]. In the JAK-STAT 
pathway, TNF-α binding to its receptor on the surface of 
cells activates JAKs, which, in turn, activate STAT proteins 
and lead to the expression of pro-inflammatory genes. 
STAT3 phosphorylation and activation by JAKs have been 
demonstrated in a variety of neurodegenerative disease mod-
els and shown to play a role in damage repair, cell survival, 
and scar formation [141]. 
 ADAM17 is involved in the shedding of cytokine recep-
tors, such as IL-6R, leading to the formation of sIL-6R, 
which can stimulate the JAK/STAT signaling pathway 

through a process called trans-signaling [142]. In diabetes, 
increased ADAM17 activity and the subsequent activation of 
JAK/STAT signaling via sIL-6R trans-signaling have been 
associated with insulin resistance, inflammation, and the 
development of diabetic complications [143]. Similarly, in 
neurodegenerative diseases such as AD and PD, activating 
the JAK/STAT pathway by ADAM17-mediated shedding of 
cytokine receptors contributes to neuroinflammation and 
neuronal dysfunction [144]. Therefore, understanding the 
relationship between ADAM17 function and the JAK/STAT 
pathway in diabetes and neurodegenerative diseases can pro-
vide insights into potential therapeutic strategies targeting 
this interplay to alleviate disease symptoms and progression. 

12. ADAM17 AS A PROSPECTIVE THERAPEUTIC 
TARGET 

 Studies investigating the effects of anti-diabetes drugs on 
cognitive function suggest that these drugs could improve 
cognitive function to varying degrees despite some contro-
versial findings [145]. However, it is still debatable whether 
anti-diabetes drugs can alleviate or even prevent diabetes-
associated MCI. The primary clinically used anti-diabetes 
drugs are sulfonylureas, biguanides, α-glucosidase inhibitors 
(AGIs), thiazolidinediones (TZDs), sodium-glucose cotrans-
porter type 2 inhibitors (SGLT2i), dipeptidyl peptidase-4 
inhibitors (DPP-4Is), glucagon-like peptide-1 receptor ago-
nists (GLP-1RAs), and insulin analogs [146]. 
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 Sulfonylureas stimulate insulin secretion and have shown 
potential in reducing neurotoxicity and improving learning 
and memory in rodent models [147, 148]. However, their 
impact on cognitive function in clinical settings remains un-
clear, with some studies showing reduced dementia risk 
[123] and others showing increased PD risk in T2DM pa-
tients [149]. Furthermore, the risk of hypoglycemia associat-
ed with sulfonylureas can have detrimental effects on cogni-
tive functions. 
 Metformin, a biguanide drug, is the first-line treatment 
for T2DM. Metformin offers various beneficial effects, in-
cluding anti-diabetic, anti-cancer, neuroprotective, and life 
span extension properties [150]. Although some studies re-
port that patients with T2DM taking metformin exhibited 
worse cognitive performance than those not taking the drug 
[120, 151, 152]. Its use has been shown to improve cognitive 
function in T2DM models [153] and, in clinical studies, to 
slow down the progression or even prevent diabetes-
associated MCI [154-156] in different epidemiologic and 
meta-analysis studies through the years [157, 158]. 
 Thiazolidinediones (TZDs) such as pioglitazone and 
rosiglitazone are considered a class of anti-hyperglycemic 
agents and agonists of peroxisome proliferator-activated re-
ceptor-gamma (PPARγ); they have potential neuroprotective 
effects due to their anti-inflammatory and anti-oxidation 
properties [159]. However, initial studies demonstrate that in 
cognitive impairment [160, 161] the mechanism of action in 
MCI can be elucidated. The increased risk of cardiovascular 
adverse effects may preclude the extended use of thiazoli-
dinediones. 
 GLP1-RAs and DDP-4Is are newer oral antidiabetic 
drugs prescribed to people with T2DM and have demonstrat-
ed neuroprotective effects in various studies. GLP1-RAs 
stimulate the pancreas to release insulin, while DDP-4Is slow 
the inactivation and degradation of GLP-1. Both drug classes 
target GLP-1 and have shown benefits in neurodegenerative 
diseases such as AD, PD, and T2DM-associated cognitive 
decline [162-165]. The neuroprotective effects of GLP-1RAs 
are attributed to multiple mechanisms, including stimulating 
neurotrophic factors, restoring cerebral insulin signaling, and 
suppressing inflammation and oxidative stress [166]. DPP-
4Is, such as sitagliptin, have demonstrated neuroprotective 
effects in AD, PD, and HD experimental models [167-170]. 
They have also shown potential for improving cognitive 
function in neurodegenerative diseases.  
 Insulin plays a crucial role in cognition, and some studies 
have shown that insulin administration improves memory in 
AD patients [171]. However, long-term intensive insulin 
treatment has potential side effects [172], and more research 
is needed to determine its safety and efficacy in cognitive 
improvement. 
 SGLT2i are anti-diabetes agents with potential neuropro-
tective effects, as shown in preclinical studies [173]. A re-
cent study found that SGLT2i empagliflozin improved cog-
nitive and physical impairment in older adults with T2DM 
and heart failure [174], sparking interest in further investiga-
tion into the potential neuroprotective effects of SGLT2i. 
Anti-diabetes drugs have shown neuroprotective effects in 
T2DM patients with or without neurodegenerative diseases, 

suggesting their potential repurposing for treating such con-
ditions. However, some studies found that these drugs did 
not improve or even worsen neurodegenerative disease pro-
gression [152, 175].  
 In this context, a comprehensive understanding of the 
most effective strategies for preserving cognitive function in 
diabetic patients, particularly in relation to ADAM17's in-
volvement in diabetes-associated MCI, necessitates contin-
ued investigation into these treatments and the development 
of targeted therapies. Consequently, further research is es-
sential to pinpoint the most effective strategies for maintain-
ing cognitive function in this patient population. 
 ADAM17 pathway inhibition is a promising therapeutic 
approach for neuroinflammatory conditions. One of the sig-
nificant benefits of this approach is its ability to improve 
control over inflammation signaling pathways without af-
fecting the anti-inflammatory TNFR2 pathway [62]. Due to 
the general involvement of ADAM17 in the principal signal-
ing pathways involving brain damage associated with diabet-
ic MCI, it is postulated that selectively inhibiting the AD-
AM17 pathway would have significant implications for the 
modulation of neuroinflammation. 
 Developing ADAM17 inhibitors for clinical use presents 
several challenges, primarily due to the complexity of AD-
AM17's functions, its involvement in various signaling 
pathways, and structural similarities with other ADAM fami-
ly proteins. In this way, inhibitors with poor specificity may 
cause off-target effects, leading to unintended consequences 
and potential side effects. Addressing these challenges is 
crucial for successfully developing ADAM17 inhibitors for 
clinical use.  Also, ADAM17's functions in AD are complex 
and somewhat contradictory. While ADAM17 is involved in 
the non-amyloidogenic processing of APP, which is consid-
ered a neuroprotective pathway, it also promotes neuroin-
flammation [60], which exacerbates neuronal damage and 
synaptic dysfunction. 
 In this way, the presence of iRhom2 in a brain-specific 
distribution within microglia [49, 50, 59] is an exciting de-
velopment in the neuroinflammation research. This distribu-
tion offers greater specificity and potentially fewer adverse 
effects than previously reported methods (Fig. 1). As pre-
sented in this article, microglia cells are the primary immune 
cells of the central nervous system and play a critical role in 
neuroinflammation. By targeting iRhom2 within these cells, 
the ADAM17 pathway can be more effectively inhibited to 
attenuate inflammation without interfering with other essen-
tial functions of microglia cells and pathways related to APP 
processing by ADAM17. 
 Although promising evidence supports inhibiting the 
iRhom2/ADAM17 pathway, further research is necessary to 
establish its safety and efficacy. Proposed experimental ap-
proaches could involve in vitro studies to investigate the 
effects of ADAM17 pathway inhibition on neuroinflamma-
tion and potential adverse effects on microglia cells. Addi-
tionally, pre-clinical models could be utilized to evaluate the 
efficacy and safety of inhibitors of the iRhom2 pathway. 
Investigating the involvement of the ADAM17/iRhom2 
pathway in the development of cognitive impairment related 
to neuroinflammation has significant potential for the field of 
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neuroscience, as it may offer insights into the underlying 
mechanisms of neurodegenerative diseases such as AD, PD, 
and multiple sclerosis. 

CONCLUSION  

 ADAM17 is a transmembrane protein that plays a signif-
icant role in various biological processes, including inflam-
mation, cell proliferation, and tissue regeneration. It acts as a 
sheddase, releasing bioactive molecules, such as cytokines, 
growth factors, and receptors, by cleaving the extracellular 
domain of transmembrane proteins. This process has been 
linked to the development of several disorders, making AD-
AM17 a crucial target for therapeutic interventions. 

 ADAM17 plays a direct role in the pathogenesis of dia-
betes-associated neurodegenerative processes, including the 
cell signaling pathways involving both diseases, such as 
AKT, NF-κB, JAK-STAT, MAPK, and NLRP3 inflam-
masome pathways. Thus, targeting ADAM17 represents a 
promising approach for treating cognitive impairment and 
neurodegenerative diseases. Moreover, identifying new tar-
gets within this pathway could lead to developing novel ther-
apeutic strategies that specifically target inflammation with-
out interfering with other essential immune system functions. 
One promising regulator protein that has shown potential in 
modulating ADAM17 activity in metabolic diseases is iR-
hom2.  

 Targeting iRhom2 could be a promising therapeutic ap-
proach for MCI, given that most current treatment options 
are related to metabolic impairment caused by diabetes. By 
targeting ADAM17 through iRhom2 modulation, the AD-
AM17 pathway can more effectively inhibit and reduce in-
flammation without interfering with other essential functions 
of microglia cells and pathways related to APP processing by 
ADAM17, being a viable future target for MCI. 

LIST OF ABBREVIATIONS 

APP = Amyloid Precursor Protein  

Aβ = Amyloid-beta  

CAMs = Cell Adhesion Molecules  

CNS = Central Nervous System  

HFD = High-fat diet  

IFNγ = Interferon-gamma  

IL-1β = Interleukin-1 beta  

IL-6 = Interleukin-6  

IRS-1 = Insulin-receptor Substrate-1  

MCI = Mild Cognitive Impairment  

MMPs = Matrix Metalloproteases  

MPD = Membrane-proximal Domain  

NF-κB = Nuclear Factor-kappa B  

PD = Parkinson’s Disease  

ROS = Reactive Oxygen Species 

T2DM = Type 2 Diabetes Mellitus  

TNF-α = Tumor Necrosis Factor-alpha  

TZDs = Thiazolidinediones  
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