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Depression is an umbrella term used to describe a mood disorder with a broad spectrum
of symptoms including a persistent feeling of sadness, loss of interest, and deficits in
social behavior. Epigenetic research bridges the environmental and genetic landscape
and has the potential to exponentially improve our understanding of such a complex
disorder. Depression is also a sexually dimorphic disorder and variations exist within
epigenetic modification sites between sexes. These sex-specific mediators may impact
behavioral symptomology and could serve as therapeutic targets for treatments to
improve behavioral deficits. This mini review will focus on the social behavior perspective
of depression and specifically explore the sexually different epigenetic modifications
on depression.
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INTRODUCTION

Depression, also referred to as major depressive disorder (MDD), or major depression, is
characterized by a range of clinical symptoms based on DSM-V criteria. In order to be diagnosed
with MDD, patients must experience a depressed mood that lasts at least two weeks. Depressive
manifestations include feelings of low self-esteem and a loss of interest or pleasure in activities that
the patient previously enjoyed. Behaviorally, depression can be evident as reduced vigor, circadian
dysfunction, eating disorders, or difficulty concentrating on important tasks. These challenges can
constitute a condition that has devastating impacts directly for the patient and indirectly for others
who have close relationships with the patient.

Impaired social functioning is a hallmark of depression and is correlated with the severity of
depression (Hirschfeld et al., 2000; Rhebergen et al., 2010). Major depressive disorder patients
tend to spend less time interacting socially and develop less depth within friendships than healthy
individuals (Elmer and Stadtfeld, 2020). Additionally, social isolation and social deficits can
contribute to the emergence of depressive symptomology (Jose and Lim, 2014). Consistent with
this relationship, patients’ reporting of feelings of loneliness is strongly associated with behavioral
symptoms of depression during social isolation in young adults (Matthews et al., 2016).

The global rise in the number of MDD diagnoses points to the need for effective therapies.
Over the past 50 years, many new therapies have emerged, such as pharmacological approaches
that have yielded 5 classes of pharmacological antidepressants consisting of selective serotonin
reuptake inhibitors (SSRIs), serotonin and norepinephrine reuptake inhibitors (SNRIs), tricyclic
antidepressants (TCAs), monoamine oxidase inhibitors (MAOIs) and atypical antidepressants
drugs. These pharmacological treatments have clinical benefit (Hillhouse and Porter, 2015), but
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are therapeutically effective in less than 50% of patients and this
have not improved significantly over time (Berton and Nestler,
2006). It is estimated that 10–30% of MDD patients completely
fail to respond to these treatments which is considered treatment-
resistant MDD (Rush et al., 2006; Conway et al., 2017). These
broad therapeutic strategies also have a latency to provide benefit
and can cause dire side effects that lead patients to withdraw from
treatments (Fava, 2000; Uher et al., 2011; Cartwright et al., 2016;
Wang et al., 2018; Sobieraj et al., 2019).

Notably, therapeutic effects vary greatly between the
sexes. For example, SSRIs, SNRIs and other pharmacological
antidepressants such as mood stabilizers, have a significantly
greater effects on women compared to men (Kornstein
et al., 2000; Khan et al., 2005; Berlanga and Flores-Ramos,
2006; Seney and Sibille, 2014; Charlotte et al., 2015). These
sex-based differences highlight the necessity to understand
the sex differences in molecular and circuit mechanisms
of depression. In this mini review we summarize recent
progress in epigenetic research revealing epigenetic target sites
corresponding to depressive behaviors. Specifically, we focus
on the sexually dimorphic epigenetic factors controlling social
deficits involved in MDD.

SEX, SOCIAL BEHAVIOR AND
DEPRESSION, WHERE IS THE BRIDGE?

For about 50 years, it has been consistently reported that
women are diagnosed with MDD at almost 2-fold greater
rate than men (Weissman and Klerman, 1977; Ford and
Erlinger, 2004). Yet, men who suffer with depression have a
10-fold greater rate of suicide attempts than women (Blair-
West et al., 1999). Many psychosocial theories are proffered
as to why sexual dimorphisms exist in the diagnosis of
depression (Jorm, 1987; Mehl-Madrona et al., 2019). However,
such stark sexual differences in depression also highlight
the need to understand the neurophysiological differences
between the sexes.

There are many baseline differences between female and
male social behaviors (Eagly and Steffen, 1986; Halpern et al.,
2007; Gur et al., 2012). Hormonal and chemosensory signals
are integrated in specific brain regions that control social
behavior (Newman, 1999; Rolls, 2004; Amodio and Frith, 2006).
Neuroimaging studies on human neurology have suggested these
behavioral differences may be influenced by sex differences in
neuroanatomy and structural connectome (Gur et al., 1999;
Goldstein et al., 2001; Cosgrove et al., 2007; Ingalhalikar
et al., 2014). A recent study using single-cell RNA sequencing
of the mouse ventrolateral subdivision of the ventromedial
hypothalamus, revealed some transcriptomic types exhibiting
differential expressions in males and females, providing the
first evidence of the existence of sex specific neurons in the
mammalian CNS (Kim et al., 2019). In addition, it has also
been suggested that genetic, epigenetic and environmental factors
all have impacts on sex differences in social behavior (Manuck
et al., 2000; Hammock and Young, 2004; Shepard et al., 2009;
Aspe-Sanchez et al., 2015; Dumais and Veenema, 2016).

Epigenetics refers to changes in gene expression in the absence
of alterations of the genome sequence (McCarthy et al., 2009).
Primary mechanisms of epigenetic regulation include DNA
methylation and demethylation, histone modifications, and non-
coding RNAs known as microRNAs [for reviews, please see
(Peters and Schubeler, 2005; Klose and Zhang, 2007; Li et al.,
2007; Bannister and Kouzarides, 2011; Ha and Kim, 2014)].
These mechanisms are important for regulations of transcription
profiles and non-coding RNA expression, whose disruptions
have significant impacts on cellular functions and therefore lead
to diseases (Portela and Esteller, 2010). Recent breakthroughs
demonstrated that stress-induced epigenetic modifications not
only have been implicated in the development of MDD (van
der Doelen et al., 2014; Jawahar et al., 2015), but have also been
reported to be transmitted across generations (Franklin et al.,
2010; Dietz et al., 2011; Gapp et al., 2014, 2020; Short et al., 2016;
Pang et al., 2017; Jawaid et al., 2018; Cunningham et al., 2021).

EPIGENETIC REGULATION AND SEX
DIFFERENCES IN ANIMAL MODELS OF
MAJOR DEPRESSIVE DISORDER
RELEVANT TO SOCIAL BEHAVIOR

Studies in rodent models of depression have revealed that specific
depressive behaviors relate to specific dysfunctions of neural
mechanisms (Yoon et al., 2014). It is also suggested that different
causes of one’s depression, such as different early life traumas,
could prompt variations of neural mechanistic issues (Pacak and
Palkovits, 2001; Goldstein, 2010; Smith and Pollak, 2020). In light
of these many possible mechanistic variations, it is not surprising
that manifestations of depression can vary greatly between
individuals. If we are to achieve a complete understanding of the
mechanisms that underlie MDD, it will be necessary to consider
not only epigenetic mechanisms, but also how they are modulated
in different ways in different social contexts. To perform those
investigations, researchers have developed a variety of animal
models of depression. Table 1 lists comparisons of studies on
a variety of rodent models of depression. Here we focus on
epigenetics studies in rodent models either exhibiting social
deficits or implementing social stressors.

Chronic Social Defeat Stress Model
The Chronic Social Defeat Stress (CSDS) paradigm induces a
range of depression-like behaviors in male mice including social
withdrawal, anxiety, helplessness, anhedonia, memory deficits
and decreased locomotion (Avitsur et al., 2001; Planchez et al.,
2019). Several observations emerged with epigenetic studies in
the CSDS paradigm. A selective reduction of brain derived
neurotrophic factor (BDNF-6) transcript in the hippocampus
and an increase of BDNF-4 transcript in the prefrontal cortex
(PFC) were found in susceptible males (Mallei et al., 2019).
Moreover, enzymes important for epigenetic modifications
were also changed in susceptible males. For example, g9a
mRNA was reduced in the hippocampus (Mallei et al., 2019);
HDAC5 and DNMT3a mRNA levels were reduced in the PFC
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TABLE 1 | Comparisons of most epigenetics studies on rodent models and human MDD.

Model Depression Expression and which
test used

Social
deficits

Expressed

Sex
Differences

Found

If epigenetic influence found- single nuclei or
homogenous analysis and which region(s)

References

(A) Chronic
Social Defeat

1- Sociability
2- Sociability, SP, TS, EPM, AD
4- Sociability, EPM, FST
5- Sociability, OFT, EPM, FST, TS
6- Sociability
7- AD, FST
8- Sociability
9- Sociability, AD
10- Sociability, weight, food intake

1, 2, 4, 5, 6,
8, 9, 10,

2, 3, 6 1- homogenous (hippocampus and PFC)
3- single nuclei (ventromedial hypothalamus)
4-homogenous (PFC)
5-homogeous (NAc)
7- homogenous (NAc)
8- homogenous (genes)
9- homogenous (hippocampus)
10- homogenous (blood, hippocampus)

(1) Mallei et al., 2019
(2) Iniguez et al., 2018
(3) Kim et al., 2019
(4) Reshetnikov et al., 2021
(5) Qian et al., 2020
(6) Lin et al., 2021
(7) LaPlant et al., 2010
(8) Elliott et al., 2010
(9) Tsankova et al., 2006
(10) Razzoli et al., 2011

(B) Chronic
Variable/Mild/
Unpredictable
Stress

1- OFT, EPM, IA
2- ST, NSF, SP, FST, EPM,
Locomotion, CORT
3- FSR
4- CORT, weight
5- FST, OFT, AD
6- AD
7- CORT, OFT, SP
8- SP, EPM, FST, OFT
9- OFT, FST
10- OFT, SP, CORT, AD
11- AD, SP

1, 4, 2, 3, 5, 6, 7,
8, 9, 10, 11

1-homogenous (hippocampus)
2- single-nuclei (NAc)
3- homogenous (NAc)
4- homogenous (hippocampus, PFC,
paraventricular nucleus (PVN)
10- homogenous (hippocampus)
11- homogenous (orbitofrontal coretx,
hippocampus)

(1) Viana Borges et al., 2019
(2) Hodes et al., 2015
(3) LaPlant et al., 2009
(4) Witzmann et al., 2012
(5) Rincon-Cortes and Grace,
2017
(6) Elakovic et al., 2011
(7) Lu et al., 2015
(8) Sachs et al., 2014
(9) Shepard et al., 2016
(10) Xing et al., 2013
(11) Pitychoutis et al., 2012

(C) Early Life
Stress

1- Sociability, OFT, FST
2- Addiction
3- OFT, SP, EPM, FST
4- FST
5- OFT, EPM, FST, CFP
7- OFT, FST, AD
8- FST, OFT, EPM, CORT

1, 2, 5, 6, 7, 1, 2, 3,
5, 6, 8

1- homogenous (NAc)
2-homogenous (PFC, NAc, ventral tegmental area,
mA)
3-homogenous (NAc)
4-homogenous (hippocampus)
5- homogenous (hippocampus)
6-single-nuclei (striatum, NAc, amygdala,
hippocampus)
7-homogenous (ventral hippocampus)

(1) Kronman et al., 2021
(2) Walker et al., 2021
(3) Lei et al., 2020
(4) Seo et al., 2020
(5) Sun et al., 2021
(6) Catale et al., 2020
(7) Chang et al., 2020
(8) Brummelte et al., 2012

(D) Flinder Line 1- FST, AD 1 1-single nuclei (hippocampus and PFC) (1) Marchetti et al., 2020

(E) Human
MDD

1- Suicide, proxy-based interviews
2- GSK-HiTDiP
3- MADRS-S, DAWBA depression
band, SUAS
4- ST, NSF, SP, FST, OFT, EPM
5- PSS, AD
6- Suicide
7- ST, NSF, SP, FST, OFT, EPM
8- ACE
9- CECA, Suicide
10- Suicide
11- Suicide
12- Suicide
13- DNHS
14- Suicide, proxy-based interviews
15- Suicide, proxy-based interviews
16- Suicide, CECA
17- Suicide, proxy-based interviews
18- HAM-D
19- Suicide
20- Suicide, MDD
21- Suicide, MDD

4, 8 7 1-single nuclei (dorsolateral PFC)
2-homogenous (blood)
3- homogenous (hippocampus)
4-single nuclei (mPFC, NAc)
5-homogenous (saliva)
6-homogenous (FCx and hippocampus)
7-homogenous (ventromedial PFC, dorsolateral
PFC, anterior insula, NAc, ventral subiculum)
8- homogenous (sperm/egg)
9- homogenous (hippocmpus)
10- homogenous (hippocampus)
11- homogenous (orbitoPFC, subgenual cingulate
gyrus)
12- homogenous (PFC)
13- homogenous (blood)
14- homogenous (PFC)
15- homogenous (hippocampus, GR)
16- homogenous (hippocampus, GR, cingulate
cortex)
17- homogenous (hippocampus, PFC, blood)
18- homogenous (blood)
19- homogenous (middle temporal gyrus)
20- homogenous (orbital frontal cortex)
21- homogenous (frontal cortex, cerebellum)

(1) Nagy et al., 2020
(2)
Leday et al., 2018
(3) Ciuculete et al., 2020
(4) Scarpa et al., 2020
(5) Palma-Gudiel et al., 2021
(6) (Misztak et al., 2020)
(7) Labonte et al., 2017
(8) Dickson et al., 2018
(9) Labonte et al., 2012a
(10) Labonte et al., 2013
(11) Murthy and Gould, 2018
(12) Schneider et al., 2015
(13) Uddin et al., 2010
(14) Nagy et al., 2015
(15) McGowan et al., 2008
(16) Labonte et al., 2012b
(17) Chen et al., 2011
(18) Lopez et al., 2013
(19) Aston et al., 2005
(20) Ernst et al., 2009a
(21) Ernst et al., 2009b

(Continued)
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TABLE 1 | (Continued)

Model Depression Expression and which
test used

Social
deficits

Expressed

Sex
Differences

Found

If epigenetic influence found- single nuclei or
homogenous analysis and which region(s)

References

22- Suicide, MDD, CECA
23- Suicide. MDD
24- Suicide

22-homogenous (cerebellum, hippocampus)
23- homogenous (PFC)
24- homogenous (frontopolar cortex, amygdala,
PVN)

(22) McGowan et al., 2008
(23) Fiori and Turecki, 2010
(24) Poulter et al., 2008

*Forced Swim Test = FST; Sucrose Preference = SP; Tail Suspension = TS; Restraint Stress = RS; Splash Test = ST; Novelty suppressed feeding = NSF; Open Field
Test = OFT; Elevated Plus Maze = EPM; Anti-depressant treatment = AD; Inhibitory Avoidance = IA; Contextual Fear Paradigm = CFP; ACE questionnaire = ACE;
Perceived Stress Scale = PSS; Suicide Assessment Scale = SUAS; Montgomery-Åsberg Depression Rating Scale-Self = MADRS-S; Development and Well-Being
Assessment = DAWBA; GlaxoSmithKline-High-Throughput Disease-specific target Identification Program = GSK-HiTDiP; Cortisol levels = CORT; Childhood Experience of
Care and Abuse interviews = CECA; Detroit Neighborhood Health Study = DNHS; Hamilton Rating Scale of Depression = HAM-D; Professional MDD diagnosis = MDD.

(Mallei et al., 2019); expression of HDAC7 was reduced in
the nucleus accumbens (NAc) (Qian et al., 2020). Thus, the
CSDS model affords an opportunity to discern the relationship
between specific epigenetic mechanisms and the emergence and
progression of depressive phenotypes.

One shortcoming of the CSDS model is the difficulty to find a
suitable intimidator to implement CSDS on female mice, because
of their generally docile behavior toward one another (Beery
and Zucker, 2011). Additionally, females are more susceptible to
develop depression-like behaviors from psychosocial stress than
physical intimidation (Haller et al., 1999; Kessler, 2003). Recently,
a paradigm known as vicarious chronic social defeat stress
(vCSDS) was developed to induce depression-like behaviors
solely using psychological stress. It was reported that vCSDS
triggered significant decreases in sociability, bodyweight and
sucrose preference, increased helplessness and higher levels of
blood corticosterone in both male and female mice compared to
controls (Warren et al., 2013; Iniguez et al., 2018). Interestingly,
there were also sexual dimorphisms in response to vCSDS
such that no significant anxiolytic response was induced in
females yet was evident in males (Warren et al., 2013; Iniguez
et al., 2018). Therefore, vCSDS model provides a practical
way for researchers to investigate sex differences in epigenetic
modifications associated with the adverse social conditions.

Chronic Variable Stress Model
Chronic variable stress (CVS) is a paradigm commonly used
to induce long-term stress related mood disorders including
depression (Cotella et al., 2019). Chronic variable stress
procedure can lead to decreases in appetite, abnormalities in
circadian rhythm cycle, elevations in corticosterone and adrenal
levels along with decreases in sucrose preference (Herzog et al.,
2009; Planchez et al., 2019). This paradigm uses a multitude of
stress-inducing methods over time to reveal stress vulnerabilities
in male and female rodents (Strekalova et al., 2011). It seems
easier for the CVS paradigm to induce behavioral changes from
females than males (Borrow et al., 2018). Other variations of
the CVS model include the chronic mild stress model (CMS)
(Willner, 2017), as well as unpredictable variable stress models
(Kessler, 1997; Kendler et al., 1999).

In general, social deficits are hard to recapitulate within
CVS paradigms without the combination of social stressors
(Witzmann et al., 2012; Viana Borges et al., 2019). Some

researchers have adopted the use of combinatorial stress
paradigms known as chronic social instability within CVS
(Haller et al., 1999; Goni-Balentziaga et al., 2018). A recent
epigenetic study using a combination of social isolation and
unpredictable CMS revealed significantly increased HDAC5
expression, decreased H3K9 and H4K12 acetylation, and reduced
BDNF levels in the hippocampus leading to impaired long-
term memory (Viana Borges et al., 2019). Nevertheless, CVS
model alone is a good tool to study sex differences in epigenetic
modifications corresponding to depression-like behaviors other
than social deficits.

Ealy Life Stress Model
Ealy Life Stress (ELS) model attempts to replicate traumatic
stress from early life experiences (Murthy and Gould, 2018).
Early life adversity may induce drastic and long-lasting
epigenetic modifications in key regulatory genes of stress
response (Nusslock and Miller, 2016; Nelson et al., 2017).
A typically used ELS model is the postnatal maternal separation
paradigm (Newport et al., 2002; Millstein and Holmes, 2007;
Anier et al., 2014). Maternal separation can induce gene
transcription changes during neurological development, leading
to disturbances in cognition, learning, and emotion (Vranceanu
et al., 2007; Tyrka et al., 2009). Moreover, maternal separation
also has long-term effects into adulthood, such as increased
susceptibility to stress, anxiety, depression and impaired spatial
navigation learning (Gross et al., 2012). A study focusing on
the long-term effects from maternal separation found that
young adult and middle-aged mice exhibited decreases in
glucocorticoid receptor (GR) expression, increases in HDAC5
levels and decreased histone acetylation in the hippocampus.
The extent of these changes were greater in middle-aged mice
than young adult mice, indicating that these epigenetic changes
are long-lasting (Seo et al., 2020). Rodents subjected to more
intense maternal separation exhibited more significant behavior
changes in anxiety, depression and contextual fear memory,
correlated with more diminished BDNF mRNA and protein
levels, decreased H3K9 acetylation and increased HDAC2 levels
in the hippocampus (Sun et al., 2021). Mice subjected to postnatal
maternal separation and then CSDS in adulthood displayed
increased susceptibility to CSDS, along with trimethylation of
the 4th lysine residue of histone H3 (H3K4me3) in the PFC
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(Reshetnikov et al., 2021), and dimethylation of lysine 79 of
histone H3 (H3K79me2) in the NAc (Kronman et al., 2021).

Other paradigms used in the ELS model include early social
isolation (ESI) paradigm- where each pup is singly housed,
and the early social stress paradigm (ESS) paradigm- where
each pup is housed with an adult male CD-1 aggressor mouse.
Comparisons of ESI and ESS on epigenetic reprogramming
concluded that different stressful early life experiences
engendered different impacts on DNA methylation levels
in specific brain regions. Particularly, ESI induced more drastic
effects on DNA methyltransferases and caused significantly
reduced expression levels of Dnmt1, Dnmt3a, and Dnmt3b
(Catale et al., 2020). Besides DNA methylation and histone
modification, microRNAs also contribute to epigenetic
modifications in ELS model. For example, overexpression
of microRNA-206 in sensory neurons reduces BDNF expression
in cell bodies and axons (Shrestha et al., 2019). Another study
utilizing ESI in male mice found that ESI susceptible mice
had elevated levels of microRNA-206 and reduced BDNF
mRNA in the ventral hippocampus compared to controls
(Chang et al., 2020).

Recently, it was found that prenatal stress on offspring
triggered more display of anxiety-like behaviors in females
and more depression-like behaviors in males. These
behavioral differences are correlated with sexually different
methylation patterns on the promotor region of GR genes,
levels of DNA methyltransferases (Dnmt1 and Dnmt3a),
and DNA demethylase (Tet methylcytosine dioxygenase
2) (Lei et al., 2020). In general, ELS models recapitulate
social deficits induced by early life adversity and are
good models to investigate sex differences in epigenetic
modifications in MDD.

EPIGENETIC REGULATION AND SEX
DIFFERENCES IN HUMAN STUDIES OF
MAJOR DEPRESSIVE DISORDER

Studies in epigenetic modifications of human MDD have
recently begun to grow, but investigations into sex differences
are still rare. Recent studies have found sexually different
methylation patterns in the dorsolateral PFC of late-life
depression (Huls et al., 2020). Ealy life stress studies have
revealed sex differences in methylation changes at the promoter
of NR3C1 and the regulatory region of the FKBP5 locus
(Hill et al., 2019; Wiechmann et al., 2019). Another study
discovered a significant sex difference in methylation of
the promoter of oxytocin gene in MDD patients (Sanwald
et al., 2020). Transcriptional studies have also shown sex-
specific transcriptional signatures in human MDD which might
be due to epigenetic modifications. For example, Labonte
et al. (2017) explored the differential expression and weighted
gene coexpression network analyses between male and female
MDD patients across the ventromedial and dorsolateral PFC,
the anterior insula, NAc, and the ventral subiculum then
compared the results with CVS mouse profiles (Labonte
et al., 2017). They were able to identify sex-specific gene

coexpression modules significantly associated with MDD and
hub genes that carry important functional roles such as DUSP6
downregulation in females and EMX1 overexpression in males
(Labonte et al., 2017).

MDD may arise in part from the differential expressions
and actions of the same gene across brain regions. Ciuculete
et al. (2020) discovered higher methylation levels within the
hepatocyte growth factor receptor (MET) gene associated
with higher depression scores and susceptibility for suicidal
symptoms, along with an inverse relationship to mRNA
levels of both hepatocyte growth factor (HGF) expression
and MET expression in the hippocampus (Ciuculete et al.,
2020). Misztak et al. (2020) discovered significant decreases
in H3K9/14ac expression, BDNF protein levels and p-S421-
MeCP2/MeCP2 protein ratio in both the frontal cortex (FCx)
and hippocampus, along with significant increases in HDAC3
protein levels and H3K27me2 expression in both the FCx and
hippocampus, as well as increases in Sin3a in the hippocampus
in suicide victims (Misztak et al., 2020). This suggests that
the lowered BDNF protein levels in suicide victims were most
likely due to decreases in histone acetylation and increased
levels of factors related to deacetylation and methylation
along with MeCP2 factor which may act bidirectionally
(Misztak et al., 2020).

Importantly, systematic comparisons in transcriptional
profiles between human MDD and three different mouse
models, including CVS, social isolation and CSDS, observed
the shared transcriptional signatures between human and
mouse models in two brain regions, the medial PFC and NAc
(Scarpa et al., 2020). Specifically, CVS and social isolation each
replicated ∼20% of the transcriptional changes in humans
MDD in the PFC and NAc whereas, CSDS recapitulated ∼4%
changes in gene expression. These results not only reveal
significant overlaps in human MDD and mouse models, but
also highlight different mouse models recapturing distinct
aspects of human MDD.

Interestingly, a recent study investigating transgenerational
epigenetic changes of depressive disorders associated reductions
in microRNA-449 and microRNA-34 in sperm of both men
and mice exposed to chronic ESI (Dickson et al., 2018). These
microRNA deficits persisting in sperm promoted anxiety and
social deficits in their offspring across generations (Dickson et al.,
2018). This study supports the notion that epigenetic mechanism
controls gene expression in a heritable way.

Most transcriptional and epigenic studies in human MDD
use bulk homogenates of tissues, concealing potentially
distinct changes in gene expression from individual cell
types. Advanced examination using single-nucleus RNA-
sequencing (snRNA-seq) on transcriptomics of the dorsolateral
PFC in MDD patients, identified 26 cellular clusters of
which, 60% revealed differential gene expression from
controls, with the greatest dysregulation found in deep
layer excitatory neurons and immature oligodendrocyte
precursor cells associated with altered expression of PRNP and
KAZN genes (Nagy et al., 2020). These results highlight the
importance of exploring cell-type specific mechanisms in the
development of MDD.
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CONCLUSION AND FUTURE
DIRECTIONS

It is evident that current pharmacological treatments cause
widespread/non-specific side effects in many MDD patients, and
patient testimonials suggest these effects do not bring them back
to a baseline of normalcy or bring stability of mind (Wang et al.,
2018). Limited efficacy and tremendous side effects of existing
treatments should compel the scientific community to develop
better targeted and individualized interventions.

Two obstacles in exploring pathogenic mechanisms of
MDD are the extremely broad clinical manifestations and the
unique individual etiological triggers. Epigenetics is an exciting
approach to bridge environments, genes and behaviors, as it
investigates environmental influences on gene expressions that
may produce individual and sex-based discrepancies in behavior
(West and Greenberg, 2011).

Human epigenetic studies are rapidly expanding. However,
most studies explore general epigenetic abnormalities in MDD,
lacking the sexual and behavioral specificity. Various rodent
models provide powerful tools to ameliorate specific aspects of
different depression-like phenotypes (Catale et al., 2020; Chang
et al., 2020; Lei et al., 2020; Kronman et al., 2021). For example,
social deficits in MDD are easily and superiorly recapitulated in
the ELS models with maternal separation and social isolation
paradigms. ELS, as well as, CSDS/vCSDS models, have great
potential to reveal sex differences within the epigenetic and
behavioral responses to stress.

Major depressive disorder (MDD) research has only begun
transitioning to explore the underlying mechanisms for evident
sexual dimorphisms in MDD. With the rapid maturation and
increasing commercial availability for new techniques such as
snRNA-seq, future research hopefully will reveal epigenetic
machinery toward accurate understanding of the sexual
dimorphic and specific aspects of behavioral deficits in MDD.

This table compiles results from most epigenetics studies on
rodent models and human MDD. In this table, we endeavor to
show the progress seen in recent decades from early research
that only included male subjects transitioning into exploring
the sexually different epigenetic modifications. (A) Chronic
social defeat stress and vicarious chronic social defeat stress is

a model in which subjected rodents are repeatedly physically
defeated by a larger, more aggressive strain or repeatedly view
the physical defeat of another rodent of the same strain via
a larger, more aggressive strain for psychosocial stress. (B)
The chronic variable stress model utilizes a variety of stressors
in order to stress subjects in order to express depressive
phenotypes. Given the selection of stressors, researchers attempt
to express specific depressive phenotypes such as social deficits.
Articles utilizing social stressors are in blue. (C) The early
life stress model has been the most popular model for MDD
from our findings. The early life stress model administers
one of various stressors, the most common being maternal
separation before weaning is supposed to occur. Some of these
stressors can be administered to the dam before the birth of
her litter. This model has provided the most robust depressive
phenotypes as of recent and can reliably express the social
deficit phenotypes when social paradigms are used that are
seen in MDD. (D) The FSL model is a line of rodents that
physiologically express many neural dysfunctions as well as
some behavioral dysfunctions seen in MDD like decreased
serotonin synthesis, reduced BDNF expression and anxious
social interactions. (E) Human MDD study utilizes the post-
mortem tissues of MDD patients. Most cases do not explore
the specific stress phenotypes that patients experienced because
testimonial accounts are limited and thus, it is hard to study
MDD associated stressful behaviors associated with mechanistic
and genetic influences.
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